Statistical Power for the Generic F-Test
generic.f.test.Rd
Calculates power for the generic F-Test with (optional) Type 1 and Type 2 error plots.
Usage
power.f.test(ncp, null.ncp = 0, df1, df2, alpha = 0.05,
plot = TRUE, verbose = TRUE, pretty = FALSE)
Arguments
- ncp
non-centrality parameter for the alternative.
- null.ncp
non-centrality parameter for the null.
- alpha
type 1 error rate, defined as the probability of incorrectly rejecting a true null hypothesis, denoted as \(\alpha\).
- df1
integer; numerator degrees of freedom.
- df2
integer; denominator degrees of freedom.
- plot
logical;
FALSE
switches off Type 1 and Type 2 error plot.TRUE
by default.- verbose
logical; whether the output should be printed on the console.
TRUE
by default.- pretty
logical; whether the output should show Unicode characters (if encoding allows for it).
FALSE
by default.
Value
- df1
numerator degrees of freedom.
- df2
denominator degrees of freedom.
- ncp
non-centrality parameter under alternative.
- ncp.null
non-centrality parameter under null.
- f.alpha
critical value(s).
- power
statistical power \((1-\beta)\).
Examples
# power is defined as the probability of observing F-statistics
# greater than the critical value
power.f.test(ncp = 1, df1 = 4, df2 = 100, alpha = 0.05)
#> +--------------------------------------------------+
#> | POWER CALCULATION |
#> +--------------------------------------------------+
#>
#> Generic F-Test
#>
#> ---------------------------------------------------
#> Hypotheses
#> ---------------------------------------------------
#> H0 (Null Claim) : ncp = null.ncp
#> H1 (Alt. Claim) : ncp > null.ncp
#>
#> ---------------------------------------------------
#> Results
#> ---------------------------------------------------
#> Type 1 Error (alpha) = 0.050
#> Type 2 Error (beta) = 0.897
#> Statistical Power = 0.103 <<
#>