Power Analysis for One-Sample Correlation
correlations.one.Rd
Calculates power or sample size (only one can be NULL at a time) to test a (Pearson) correlation against a constant using Fisher's z transformation.
Formulas are validated using PASS and G*Power.
Usage
power.z.onecor(rho, null.rho = 0,
n = NULL, power = NULL, alpha = 0.05,
alternative = c("two.sided", "one.sided"),
ceiling = TRUE, verbose = TRUE, pretty = FALSE)
Arguments
- rho
correlation.
- null.rho
correlation when null is true.
- n
sample size.
- power
statistical power, defined as the probability of correctly rejecting a false null hypothesis, denoted as \(1 - \beta\).
- alpha
type 1 error rate, defined as the probability of incorrectly rejecting a true null hypothesis, denoted as \(\alpha\).
- alternative
character; direction or type of the hypothesis test: "two.sided" or "one.sided".
- ceiling
logical; whether sample size should be rounded up.
TRUE
by default.- verbose
logical; whether the output should be printed on the console.
TRUE
by default.- pretty
logical; whether the output should show Unicode characters (if encoding allows for it).
FALSE
by default.
Value
- parms
list of parameters used in calculation.
- test
type of the statistical test (Z-Test)
- mean
mean of the alternative distribution.
- sd
standard deviation of the alternative distribution.
- null.mean
mean of the null distribution.
- null.sd
standard deviation of the null distribution.
- z.alpha
critical value(s).
- power
statistical power \((1-\beta)\).
- n
sample size.
References
Bulus, M., & Polat, C. (2023). pwrss R paketi ile istatistiksel guc analizi [Statistical power analysis with pwrss R package]. Ahi Evran Universitesi Kirsehir Egitim Fakultesi Dergisi, 24(3), 2207-2328. doi:10.29299/kefad.1209913
Chow, S. C., Shao, J., Wang, H., & Lokhnygina, Y. (2018). Sample size calculations in clinical research (3rd ed.). Taylor & Francis/CRC.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
Examples
# expected correlation is 0.20 and it is different from 0
# it could be 0.20 as well as -0.20
power.z.onecor(rho = 0.20,
power = 0.80,
alpha = 0.05,
alternative = "two.sided")
#> +--------------------------------------------------+
#> | SAMPLE SIZE CALCULATION |
#> +--------------------------------------------------+
#>
#> One-Sample Correlation
#>
#> ---------------------------------------------------
#> Hypotheses
#> ---------------------------------------------------
#> H0 (Null Claim) : rho - null.rho = 0
#> H1 (Alt. Claim) : rho - null.rho != 0
#>
#> ---------------------------------------------------
#> Results
#> ---------------------------------------------------
#> Sample Size = 194 <<
#> Type 1 Error (alpha) = 0.050
#> Type 2 Error (beta) = 0.200
#> Statistical Power = 0.8
#>
# expected correlation is 0.20 and it is greater than 0.10
power.z.onecor(rho = 0.20, null = 0.10,
power = 0.80,
alpha = 0.05,
alternative = "one.sided")
#> +--------------------------------------------------+
#> | SAMPLE SIZE CALCULATION |
#> +--------------------------------------------------+
#>
#> One-Sample Correlation
#>
#> ---------------------------------------------------
#> Hypotheses
#> ---------------------------------------------------
#> H0 (Null Claim) : rho - null.rho <= 0
#> H1 (Alt. Claim) : rho - null.rho > 0
#>
#> ---------------------------------------------------
#> Results
#> ---------------------------------------------------
#> Sample Size = 593 <<
#> Type 1 Error (alpha) = 0.050
#> Type 2 Error (beta) = 0.200
#> Statistical Power = 0.8
#>